T1rho MR is Sensitive to Changes in Normal Appearing White Matter and Gray Matter in Multiple Sclerosis

Jay V. Gonyea1, Christopher G. Filipp2, Angela Applebee3, Trevor Andrews1,4, Lindsay Kerr5, Scott Hipko, J.P. Nickerson1, and Richard Watts1

1Department of Radiology, University of Vermont College of Medicine, Burlington, VT, United States, 2Department of Neurology, University of Vermont College of Medicine, Burlington, VT, United States, 3Department of Radiology, Columbia University Medical Center, New York, NY, United States, 4Philips Healthcare, Cleveland, OH, United States, 5University of Vermont College of Medicine, Burlington, VT, United States

Purpose

To determine if quantitative T1rho MRI is sensitive to the demyelination process, or protein leakage found in the brains of Multiple Sclerosis (MS) patients[1], and to compare to normative values of T1rho in white matter (WM) and cortical gray matter (GM).

Methods

Study Design

• Prospective Cross-Sectional Pilot Study
• 29 MS patients aged 30-60 (43.7 9.2)
• 18 age-matched controls
• MS patient sub-types: Clinically Isolated Syndrome (10), Relapsing-Remitting (14), Primary Progressive (1), and Secondary Progressive (4) MS
• Data was acquired using a Philips 3T Achieva TX scanner and an 8-channel head coil
• Institutional Review Board (IRB) approval was obtained and all patients were consented

Acquisition

• Whole-brain T1rho-weighted images were acquired using a fluid attenuated variable flip angle 3D turbo spin echo technique (spatial resolution 1.8x1.8x1.8mm3). Images were acquired with a spin lock frequency of 500Hz and spin lock durations of 0, 20, 40, 60, 80 and 100ms.

Analysis

• Each T1rho map was calculated based on a single exponential fit to the co-registered T1rho-weighted images. The T1rho map was then itself co-registered to a T1-weighted 3D TFE anatomical scan. Using unified segmentation[2] (SPM8) of the T1-weighted image, the T1rho maps were segmented into WM and GM and spatially normalized to MNI space. Major WM tracts were defined using the JHU atlas[3], while cortical GM and juxta-cortical WM were defined by an intersection of the Harvard-Oxford cortical atlas (dilated by 5mm) with the subject-specific GM and WM masks respectively. In addition, 3D FLAIR (spatial resolution 1.2x1.2x1.2mm3) and 3D DIR (spatial resolution 1.2x1.2x1.3mm3) images were obtained for lesion identification.

Results

Cortical GM T1rho values were higher in all MS groups compared to controls, although this did not achieve statistical significance. WM regions demonstrated significantly higher T1rho values in all MS groups compared to controls. Juxta-cortical WM regions were higher in all MS groups, but did not prove significant in the CIS group. The new T1rho technique produced high SNR whole-brain T1rho maps. Figure 1 shows an example of the defined regions-of-interest using the WM/GM segmentation of T1 weighted image and pre-defined MNI templates. The T2-FLAIR shows periventricular lesions that are clearly delineated on the T1rho map. These lesions demonstrate substantially increased T1rho (typically 100ms or greater) compared to the surrounding tissue (75-80ms); however, we subtracted the lesions out so that they did not artificially inflate the T1rho values of the MS groups.

Table 1. Subject demographics and T1rho estimates. (Mean±SD) RR=Relapsing remitting, CIS=Clinically isolated syndrome, PP=Primary progressive. Notes:1 Male SPMS withdrew for claustrophobia.; only 1 PPMS recruited no statistics available for subject.

Discussion and Conclusions

T1rho MRI has previously been shown to reflect the macromolecular content of biological tissue, due to chemical exchange. Limited brain studies have shown T1rho to be sensitive to the changes associated with Alzheimer’s and Parkinson’s disease [4]. MS is known to cause disruption of the blood-brain barrier, which leads to increased levels of blood serum proteins in the brain [1]; this increase in protein content can increase chemical exchange locally. Abnormal epithelial tight junction (TJ) proteins found in MS could be a possible source of chemical exchange that is detectable with a quantitative MRI measure, like T1rho. Our results demonstrate that both normal-appearing WM and juxta-Cortical WM have increased T1rho values in MS compared to age-matched controls. GM did not achieve a statistical difference. Lesions have low signal intensity on the T1-weighted images, leading to their exclusion from the WM/GM masks generated by the segmentation. Thus, our results are not biased by lesion load, which would otherwise increase the T1rho values within the defined regions. Including lesions in the analysis would likely increase differentiation between the MS and control groups due to their higher T1rho values. In addition, although this study found significant differences between non-focal regions of interest in WM and JCWM, it is possible that specific brain regions show greater changes, which would improve the diagnostic utility of this approach. MS is known to result in early stage cortical lesions, although these lesions are often not visible on standard imaging[5,6]. T1rho may provide a quantitative measure of juxta-Cortical WM changes that are not seen with other methods. While the differences in T1rho values is relatively small (~1-2ms), our technique has sufficient sensitivity to detect this subtle change.

Acknowledgements

• Aida Arapovic, Research Coordinator, Department of Radiology, Fletcher Allen Healthcare, Burlington, VT
• Steven Braff, M.D., Chairman, Department of Radiology, Fletcher Allen Healthcare, Burlington, VT
• Jane Low, Research Coordinator, Department of Neurology, Fletcher Allen Healthcare, Burlington, VT
• US Department of Energy SC 0001753

References