Differential Effects of Cigarette Smoking on Cardiovascular Disease in Females

Diann Gaalema, PhD
DISCLOSURES

Funding

- Research in part supported by
 - R33HL143305 from the National Heart, Lung, and Blood Institute
 - P20GM103644 from the National Institute of General Medical Sciences
- The content is solely the responsibility of the author and does not necessarily represent the official views of the NIH
- No conflicts to disclose

Data Sources

- This presentation was supported by data obtained, in part, from the AACVPR Outpatient Cardiac Rehabilitation Registry. The opinions, results and conclusions reported are those of the authors and are independent from the AACVPR. No endorsement by AACVPR is intended or should be inferred. The AACVPR Registries are supported by registry participant program subscriptions and outside funding from CardiaLine, Cedaron, LSI, and ScottCare
OUTLINE

• Cardiovascular disease (CVD) and smoking
• Sex differences in smoking and CVD
• Potential mechanism behind increased risk
• Rates of smoking in those with CVD by sex
• Challenges in smoking cessation in those with CVD
• Implications for secondary prevention
CARDIOVASCULAR DISEASE AND SMOKING
CARDIOVASCULAR DISEASE AND SMOKING

• Dangers of combusted tobacco use\(^1\)
 • Endothelial dysfunction
 • Blood vessel constriction
 • Platelet activation
 • Dyslipidemia
 • Chronic inflammatory state

• Outcomes
 • Accelerate atherosclerosis
 • Destabilize coronary artery plaques
 • Precipitate acute coronary events

• 50 years of smoking has led to 7,787,000 premature deaths due to cardiovascular and metabolic diseases\(^2\)

1. Barura et al., 2018. 2. USDHHS, 2014

This Photo by Unknown Author is licensed under CC BY-NC-ND
SEX DIFFERENCES IN CARDIOVASCULAR DISEASE AND SMOKING
SMOKING AND CVD – SEX DIFFERENCES

• Generally, an age gap in the development of CVD by sex
 • Age of first myocardial infarction\(^1\)
 • 72 for females
 • 65.6 for males

• Smoking appears to eliminate the age gap
 • Study of 11,762 men and 13,206 women
 • Looking at increased risk of MI in females smoking ≥20 cigarettes per day
 • Aged 25-54, HR = 3.8
 • Aged 55-69, HR = 2.2
 • Aged ≥70, HR = 1.6
 • Do not see this same pattern in males

• Similarly, we see males and females, who smoke, entering cardiac rehabilitation at a similar age\(^3\)
 • Elevated CO – 63, did not differ by sex
 • Low CO – 67, likely differed by sex

SMOKING AND CVD – MORE THAN JUST AGE AT FIRST EVENT

- Disparities in development of disease and outcomes
 - Within those who smoke, females have a 25% increased risk of developing CHD than males\(^1\)
 - Multivariate-adjusted RR for CHD mortality: males 2.50 (95% CI, 2.34–2.66), females, 2.86 (95% CI, 2.65–3.08)\(^2\)
- These discrepancies are even higher for certain types of CHD
- STEMI
 - Smoking is associated with a significantly greater increase in STEMI for females than males (IRR: 6.62 vs. 4.40)\(^3\)
 - Outcomes disparate here too, higher association between STEMI and 30-day mortality in females compared to males (OR 3.86 vs. 2.75)\(^4\)

1. Huxley et al., 2011.
2. USDHHS 2014.
4. Vasiljevic et al., 2021
POTENTIAL MECHANISM OF INCREASED RISK
USE OF NICOTINE/COMBUSTION REDUCES ESTROGEN LEVELS

- The relationship between tobacco use, estrogen levels, and the risk of cardiovascular disease (CVD) in females is complex and multi-faceted

 + **Hypothalamic-pituitary-Ovarian Dysfunction**: Nicotine has been shown to adversely impact ovarian function by inhibiting the secretion of gonadotropin-releasing hormone (GnRH), essential for estrogen synthesis\(^1\)

 + **Hepatic Enzyme Induction**: Compounds in tobacco smoke induce the activity of cytochrome P450 liver enzymes, which accelerate the metabolism (e.g. 2'-hydroxylation) and clearance of estrogen from the body\(^2\)

 + **Inhibition of Aromatase Enzyme**: The aromatase enzyme (CYP19A1) converts androgens to estrogens. Nicotine and polycyclic aromatic hydrocarbons (PAH) appear to inhibit aromatase activity, reducing the endogenous production of estrogen\(^3,4\)

MECHANISMS OF INCREASED CVD RISK

- **Endothelial Dysfunction:** Estrogen plays a pivotal role in maintaining vascular health by enhancing nitric oxide (NO) production, an endothelial-derived vasodilator. Reduced estrogen levels diminish NO availability, promoting vasoconstriction and thereby increasing the risk of cardiovascular events.\(^1\)

- **Pro-inflammatory State:** Reduced estrogen levels tip the balance towards a pro-inflammatory state characterized by elevated levels of inflammatory markers such as C-reactive protein, interleukin-6, and tumor necrosis factor-α, further contributing to the pathogenesis of CVD.\(^2\)

- **Altered Lipid Metabolism:** Estrogen has a favorable effect on lipid profiles, increasing high-density lipoprotein (HDL) and reducing low-density lipoprotein (LDL) levels. Lowered estrogen due to tobacco use exacerbates dyslipidemia, a known risk factor for CVD.\(^3\)

- **Increased Platelet Aggregation:** Lower levels of estrogen have been linked to increased platelet aggregation and elevated plasma fibrinogen levels, enhancing the pro-thrombotic milieu conducive to MI and CVA.\(^4\)

- **Synergistic Negative Effects:** Combusted tobacco itself directly contributes to endothelial dysfunction, inflammation, and platelet aggregation. When combined with reduced estrogen levels, this results in a synergistic deleterious impact on cardiovascular health.\(^5\)

Reduced estrogen levels

- Hypothalamic-Pituitary - Ovarian dysfunction
- Hepatic enzyme induction (P450 1A1 and 1A2)
- Inhibition of aromatase

Increased CVD risk

- Endothelial dysfunction
- Pro-inflammatory state
- Altered lipid metabolism
- Increased platelet aggregation

Exposure to combusted byproducts and nicotine
RATES OF SMOKING IN THOSE WITH CARDIOVASCULAR DISEASE BY SEX
SMOKING RATES BY SEX IN THOSE WITH CVD

- Historically, males have been more likely to smoke which may have led to less focus on the issue of smoking in females
- Over the last several decades, the prevalence of smoking in the United States has dramatically decreased
 - Decreasing faster in certain populations
- Looking at the NHANES, risk factors by sex over time in those 20-79 years of age
 - Current smoking decreasing faster in males
- A pattern replicated in other vulnerable populations
 - Female smoking rates may actually overtake that of males

1. Peters et al., 2019. 2. Cepeda-Benito et al., 2018
SMOKING RATES BY SEX IN CARDIAC REHABILITATION

- AACVPR Registry Database
 - Data from certified programs nation-wide
 - Over 400,000 patients from 2012-2021
 - ~30% female

- Current smoking rates at entry are equal
 - Females: 7.6%
 - Males: 7.8%

Unpublished data
CHALLENGES OF SMOKING CESSATION IN THOSE WITH CARDIOVASCULAR DISEASE
SMOKING CESSATION IS CHALLENGING

- Efficacious medications available
 - NRT
 - Bupropion
 - Varenicline
 - Combination therapies likely best

- Efficacy and safety demonstrated, including in those with CVD$^{1-5}$
 - Still strong hesitancy for use in populations with CVD

- In a study of 282 hospitals and over 30,000 patients hospitalized with CHD who were currently smoking6
 - Only 22.7% of patients received any sort of medication for smoking cessation
 - 90% of those were for nicotine patch alone

RELYING ON NRT MAY BE PROBLEMATIC FOR FEMALES

- NRT may not be as effective for females as males\(^1,2\)
 - Females may be less sensitive to the pharmacological effects of nicotine\(^3\)
 - Females metabolize nicotine faster than males
 - Under dosed on nicotine replacement therapy?

1. Smith et al., 2017. 2. Piper et al., 2010. 3. Perkins et al.

Treatment comparison

<table>
<thead>
<tr>
<th>Head-to-head comparisons</th>
<th>Risk ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
</tr>
<tr>
<td>Varenicline vs. TN</td>
<td>1.41 [1.12, 1.76]</td>
</tr>
<tr>
<td>Bupropion SR vs. TN</td>
<td>1.02 [0.83, 1.25]</td>
</tr>
<tr>
<td>Varenicline vs. Bupropion SR</td>
<td>1.38 [1.08, 1.77]</td>
</tr>
</tbody>
</table>

Men	
Varenicline vs. TN	1.16 [0.91, 1.47]
Bupropion SR vs. TN	1.04 [0.82, 1.33]
Varenicline vs. Bupropion SR	1.11 [0.85, 1.45]

Combined	
Varenicline vs. TN	1.25 [1.02, 1.53]
Bupropion SR vs. TN	1.01 [0.82, 1.23]
Varenicline vs. Bupropion SR	1.24 [0.99, 1.55]

Versus placebo	
Women	
TN vs. Placebo	1.45 [1.24, 1.70]
Varenicline vs. Placebo	2.04 [1.71, 2.44]
Bupropion SR vs. Placebo	1.48 [1.23, 1.77]

Men	
TN vs. Placebo	1.69 [1.41, 2.03]
Varenicline vs. Placebo	1.96 [1.65, 2.34]
Bupropion SR vs. Placebo	1.76 [1.43, 2.19]

Combined	
TN vs. Placebo	1.59 [1.38, 1.84]
Varenicline vs. Placebo	1.99 [1.71, 2.33]
Bupropion SR vs. Placebo	1.61 [1.35, 1.91]
RELYING ON NRT MAY BE PROBLEMATIC FOR FEMALES

• Other medications may work better for females\(^1\)

• Relying on NRT for treating smoking in those with CVD may continue to widen sex disparities

1. McKee et al., 2016
IMPLICATIONS FOR SECONDARY PREVENTION/CARDIAC REHABILITATION
IMPLICATIONS FOR CARDIAC REHABILITATION/SECONDARY PREVENTION

- Smoking can interfere with gains during CR
- UVMMC Clinical CR database
 - 2208 patients who completed CR
 - 553 female
- Improvement in fitness (Peak VO2)
 - Effect of current smoking (self-report)
 - No sex effect

Unpublished data
IMPLICATIONS FOR CARDIAC REHABILITATION/SECONDARY PREVENTION

• Do those who smoke differ by sex?
• Carbon monoxide measured on 1122 patients entering CR
 • 322 females
• Focused on those with CO ≥ 4
 • Examined differences by sex

Females with elevated CO had CO levels double that of males
EFFECT OF SMOKING ON OUTCOMES IN CR/PR

Check out the poster session

More in-depth on how smoking affects outcomes
THANK YOU

Diann Gaalema, PhD
digaalem@utmb.edu
ACKNOWLEDGEMENTS

Thank you to:

- Philip Ades
- Sherrie Khadanga
- Joseph Allencherril
- Katie Menson
- Patrick Savage
- Blair Yant
- Brian Katz
- William Middleton